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a b s t r a c t

This work is concerned with the comparison between a two-dimensional axisymmetric simulation of
glass melt flowing through a pipe with a circular cross-section and a one-dimensional model studied
by Gießler et al. [Gießler, C., Lange, U., Thess, A., 2007. Nonlinear laminar pipe flow of fluids with strongly
temperature-dependent material properties. Phys. Fluids 19, 043602]. The fluid is supposed to be heated
by internal electromagnetic (Joule) heating and cooled at the wall by convection. The exponential tem-
perature dependence of the viscosity and the electrical conductivity are fully taken into account. The
two models are being compared over a range of values of two different parameters. We find a very good
agreement for moderate and high thermal conductivities or in the case of dominating heating. For strong
cooling and low thermal conductivities, differences between the one-dimensional model and the two-
dimensional axisymmetric simulation occur. The comparison shows that in the latter case the formation
of strong radial temperature variations and the resulting radial variation of the viscosity lead to a diver-
gence between the two-dimensional simulation and the one-dimensional model.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

During the production of glass usually Forehearth and Feeder
systems are used to transport and condition the glass melt (Noelle,
1997). These are typically pipes or ducts connecting the melting
furnace and forming device where the melt is cooled down from
the refining temperature to a suitable forming temperature. This
is often realized by applying an electrical current either directly
into the melt or if the walls are conductive, upon the walls of the
pipe. The temperature variation within the melt leads to a large
change of various material properties which can lead to unin-
tended inhomogeneities of the final glass product.

In order to control the cooling process we have to obtain a dee-
per understanding of the behaviour of the system. An accurate pre-
diction of the pipe flow is necessary including all relevant
temperature-dependent material parameters. The goal of our work
is to show numerically the complex flow structure of a two-dimen-
sional axisymmetric pipe flow if the temperature-dependent mate-
rial properties of glass melts are included.

There have been several works mainly in geological science
focusing on temperature-dependent viscosity. In Richardson
(1986), Whitehead and Helfrich (1991), Helfrich (1995), and Wylie
and Lister (1995), one-dimensional models of lava flow in slots,
ducts or pipes with cooled walls had been derived. These studies
observed that the temperature-dependent viscosity can lead to a
dramatic modification of the laminar flow characteristics. Bifurca-
ll rights reserved.
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tion develops for sufficiently large viscosity differences – for a gi-
ven pressure drop three steady state solutions were found.
Similar results were found for a pipe flow of glass melts in Lange
and Loch (2002) and reported from glass production (Lange, pri-
vate communication). In all these works only non-heated flows
in cooled tubes were considered. Heating, however, has not been
considered at all. A recent theoretical contribution (Gießler et al.,
2007) examined the influence of coupled wall heat loss and inter-
nal volumetric heating. Furthermore, this work included the full
non-linear temperature dependence of the viscosity and electrical
conductivity. In this one-dimensional model of glass melt the flow
is driven by a constant external force density which is acting along
the whole pipe. Additionally, the flow is influenced by temperature
variations due to wall heat loss, internal heating, advection, and
diffusion. The model allows the calculation of the mean velocity
and the mean temperature for a given set of parameters. While a
bifurcation develops when the fluid is cooled, a non-linear laminar
flow characteristic develops when the fluid is heated. However,
this analytical model neglects the dependence of velocity and tem-
perature on the radial coordinate which may influence the flow as
well.

The goal of the present work is to validate this one-dimensional
model and to analyse the influence of the dependence of velocity
and temperature on the radial coordinate. In order to achieve this
goal we systematically perform numerical parameter studies of the
pipe flow model using a two-dimensional axial configuration. We
would like to find the range of validity for the one-dimensional
model. Furthermore, we will explain physically deviations of the
numerically and analytically obtained results.
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Nomenclature

A glass-specific viscosity parameter
B glass-specific viscosity parameter (K)
C glass-specific viscosity parameter (�C)
cp heat capacity (J/(kg K))
E glass-specific constant
F glass-specific constant (K)
G glass-specific constant (�C)
J current density (A/m2)
L length of the pipe (m)
pdiff mean pressure difference (Pa)
R radius of the pipe (m)
T temperature (K)
T1 ambient temperature (K)

Tin inlet temperature (K)
Tout mean outlet temperature (K)
u(x, r) velocity field (m/s)
um mean velocity (m/s)
x, r system of coordinates (m)
k thermal conductivity (W/m K)
g dynamic viscosity (Pa s)
g0 glass-specific viscosity parameter (Pa s)
a heat-transfer coefficient (W/m2 K)
q density (kg/m3)
r electrical conductivity (S/m)
r0 glass-specific constant (S/m)

C. Giessler et al. / International Journal of Heat and Fluid Flow 29 (2008) 1462–1468 1463
2. Mathematical formulation and numerical method

2.1. Definition of the model

We consider a laminar and steady flow of a viscous electrically
conducting fluid in a pipe with circular cross-section driven by a
pressure difference between the inlet and the outlet of the pipe.
The pipe has the length L and the radius R� L as shown in Fig.
2-1. At the inlet of the pipe the temperature Tin and the parabolic
flow profile with the mean velocity um = umax/2 are given. An exter-
nal homogenous horizontal electric current density J acts upon the
entire circular pipe. The Joule heat flux density J2/r(T) acts as an
energy source.

The highly viscous fluid with constant density q is supposed to
have strongly temperature-dependent viscosity g(T) and electrical
conductivity r(T). During the simulations the temperature-depen-
dent viscosity equation,

gðTÞ ¼ g0 � expð�Aþ B=ðT þ CÞÞ; ð1Þ

and the equation for the temperature-dependent electrical
conductivity

rðTÞ ¼ r0 � expðE� F=ðT þ GÞÞ ð2Þ

are used. The constant parameters A, B, C, E, F, G are specific to the
considered glass melt. While the viscosity decreases as the temper-
x

r

Tin 

Tout 

R

L

u(r,x)

J

T∞ 

Fig. 2-1. Sketch of the considered flow in a circular pipe.
ature increases, the electrical conductivity increases significantly
with the temperature. As C is typically negative, the viscosity law
Eq. (1) only makes sense for T > �C as g ?1 for T ? jCj.

The steady pipe flow is governed by the steady Navier–Stokes
equation,

qu � ðruÞ ¼ �rpþr � ½gðruþ ðruÞTÞ�; ð3Þ

and the condition of incompressibility

r � u ¼ 0: ð4Þ

The left hand-side of the Stokes Eq. (3) represents the advection of
the velocity field and the right hand-side represents the driving
pressure gradient and the internal friction. We like to emphasize,
that the velocity field u = ur(x,r)er + ux (x,r)ex is not only a function
of the radial coordinate r. As the viscosity is a function of the tem-
perature and therefore depends both on r and x, the velocity u de-
pends on the axial position as well, e.g. u = u(x,r). As a result the
flow is not fully developed. The applied boundary conditions of
the two-dimensional axial model are

oux

or
¼ 0; ur ¼ 0; for r ¼ 0; ð5aÞ

ur ¼ ux ¼ 0 for r ¼ R; ð5bÞ

ux ¼ 2 � um � 1� r
R

� �2
� �

; ur ¼ 0 for x ¼ 0; ð5cÞ

ur ¼ 0; p ¼ 0 for x ¼ L: ð5dÞ

Let us note that the boundary condition at the outlet, Eq. (5d), is the
outflow condition which is provided by the commercial tool
Comsol.

To calculate the temperature distribution in the pipe the steady
energy equation

qcpu � rT ¼ J2

rðTÞ þ k � r2T ð6Þ

applies with the boundary conditions given by

oT
or
ð0; xÞ ¼ 0 for r ¼ 0; ð7aÞ

� k
oTðR; xÞ

or
¼ aðTðR; xÞ � T1Þ for r ¼ R; ð7bÞ

Tðr;0Þ ¼ T in for x ¼ 0; ð7cÞ
ex � ð�krTÞ ¼ 0 for x ¼ L: ð7dÞ

The heat convection is specified on the left-hand side of the energy
Eq. (6) with the constant density q and the constant heat capacity
cp. The first term on the right-hand side represents the generation
of heat by the Joule effect according to J2/r(T). The second term
specifies the heat conduction with constant thermal conductivity
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coefficient k. The boundary condition, Eq. (7b), specifies the convec-
tive heat-transfer at the pipe wall with the external temperature T1
and the constant overall heat-transfer coefficient a. A short expla-
nation of the validity of this boundary condition is given in the
Appendix.

2.2. Numerical method

The purpose of this work is to verify the results of the analytic
one-dimensional model studied in Gießler et al. (2007). This model
describes the variables only as function of the coordinate x. For
example the calculation of the mean viscosity in Gießler et al.
(2007) is done exclusively with the mean temperature. The present
numerical analysis using the commercial software package COM-
SOL, however, predicts the dependence of u and T on two coordi-
nates, namely the streamwise coordinate x and the radial
coordinate r. As a result, a temperature- and viscosity-profile are
established at every x by the additional consideration of the depen-
dence on r.

In the process of our numerical study the mean velocity um and
the inlet temperature Tin are prescribed. The output quantities we
analysed are the mean pressure difference pdiff that arises between
in- and outlet of the cylinder and the mean temperature at the out-
let Tout. To determine the pressure at the in- and outlet an integra-
tion is carried out. The mean pressure difference is a cross-section
averaged quantity and is defined as follows:

pdiff ¼
2
R2

Z R

0
pðr;0Þrdr �

Z R

0
pðr; LÞrdr

� �
:

A similar definition applies for the cross-section averaged tempera-
ture at the outlet:

Tout ¼
2
R2

Z R

0
Tðr; LÞrdr:

The multiphysics tool COMSOL uses the finite-element method to
solve partial differential equations. We use the direct solver UMF-
PACK with a relative accuracy of 1.0E�6. The mesh is unstructured
with a total of 4480 basic net elements, whereas the border areas of
the cylinder have a more detailed resolution because of the com-
plexity of the computations. Tests of convergence for the
two-dimensional axial model at hand led to the following result:
a number of only 2000 basic net elements already produce con-
verged results as shown in Fig. 2-2.
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Fig. 2-2. Convergence behaviour of the pressure difference as a function of the
number of basic net elements for two-dimensional axisymmetric simulation with
J = 103 A/m2, T1 = 293.15 K, um = 10�5 m/s.
We checked our numerical model by calculating the mean
velocity for a given pressure difference for an isothermal case.
The results match with results obtained with the Hagen–Poiseulle
law (White, 1999).

3. Results

In our studies the current density J, the heat-transfer coefficient
a and the ambient temperature T1 are varied to verify the validity
of the one-dimensional model in a wide range of parameters. For
an easy comparability with the one-dimensional model (Gießler
et al., 2007) only the temperature dependence of the viscosity
g(T) and of the electrical conductivity r(T) are taken into account.
All other material parameters are treated as constants. Typically
glass has a temperature-dependent thermal conductivity k(T).
But the main object of the one-dimensional model was to study
the influence of the temperature-dependent electrical conductivity
and viscosity on the flow. Therefore, and to keep the one-dimen-
sional model as simple as possible, k is set to a constant value. In
the following simulation the thermal conductivity is assumed to
be constant to allow for a good comparability. During the studies
in Section 3.4 simulations for different k values are carried out to
analyse its effect on the fluid flow. The calculations are carried
out for the SCHOTT glass nb. 8412 – ‘‘Fiolax klar” with the material
properties given in Table 1. The examined pipe has a radius of
R = 0.025 m, a length of L = 0.5 m and an inlet temperature of
Tin = 1573.15 K.

3.1. Heating without cooling

First we examine a system with heating due to the Joule effect
and without cooling, a = 0 W/m2 K. The dependence of the mean
inlet velocity um and mean outlet temperature Tout on the applied
mean pressure difference pdiff is shown in Figs. 3-1 and 3-2, respec-
tively. We performed two analysis for J1 = 103 A/m2 and J2 = 104

A/m2, respectively. Starting with a high velocity um the pressure
difference pdiff is found to decrease linearly. A similar linear flow
characteristic is observed if we start with a low velocity. The tran-
sition between these linear regimes is characterised by a non-lin-
ear regime. For high velocities the flow characteristic does not
depend on the heat input, so the curves for J1 and J2 coincide. But
for small velocities the curves are shifted for different heat inputs.
Here the pressure difference for a given velocity is smaller if the
heat input is higher. The lower linear flow regime is a consequence
of the weak variation of the viscosity, as g approaches asymptoti-
cally its lowest possible value g(T) = g0 for high temperatures. Only
a higher current density leads to a further rise of the temperature
until the influence compared with the heat conduction is so low,
that a constant maximum temperature arises, see Fig. 3-2.

The comparison of the simulation results (markers in Figs. 3-1
and 3-2) with the results obtained with the one-dimensional mod-
el (lines in Figs. 3-1 and 3-2) shows a very good agreement. This is
Table 1
Material parameters for the SCHOTT glass nb. 8412 ‘‘Fiolax klar”

cp 1450
q 2200
A 2.30259
B 10679.4
C �242.2
E 2.04117
F 7680.11
G 273.15
r0 100
g0 0.1
k 1.2



Fig. 3-1. Results for heating without cooling: dependence of the mean velocity on
the applied pressure difference as obtained from the numerical simulation for
J = 103 A/m2 and for J = 104 A/m2 in comparison with the prediction of the one-
dimensional model of Gießler et al. (2007) with a = 0 W/m2 K.

Fig. 3-2. Results for heating without cooling: dependence of the mean outlet
temperature on the applied pressure difference as obtained from the numerical
simulation for J = 103 A/m2 and for J = 104 A/m2 in comparison with the prediction
of the one-dimensional model of Gießler et al. (2007) with a = 0 W/m2 K, and
Tin = 1573.15 K.

Fig. 3-3. Results for cooling without heating: dependence of the mean velocity on
the applied pressure difference as obtained from the numerical simulation for
T1 = 293.15 K and for T1 = 1173.15 K in comparison with the prediction of the one-
dimensional model of Gießler et al. (2007) with a = 10 W/m2 K.

Fig. 3-4. Results for cooling without heating: dependence of the mean outlet
temperature on the applied pressure difference as obtained from the numerical
simulation for T1 = 293.15 K and for T1 = 1173.15 K in comparison with the
prediction of the one-dimensional model of Gießler et al. (2007) with
a = 10 W/m2 K, and Tin = 1573.15 K.
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due to the fact that the Joule heating warms up the fluid homoge-
nously and according to that the dependence of the temperature
on r is weak. Therefore, the radial variation of g is small and the
mean viscosity of the two-dimensional simulation and the one-
dimensional model coincide.

3.2. Cooling without heating

In this Section we turn to a system with cooling, a = 10 W/m2 K,
and without heating, e.g. J = 0 A/m2. In doing so, we vary um as well
as the ambient temperature T1 and calculate the mean pressure
difference pdiff between the inlet and the outlet and the mean out-
let temperature Tout. The results are shown in Figs. 3-3 and 3-4.

For a high ambient temperature of T1 = 1173.73 K we observe a
bifurcation, hence a pressure range in which one pressure value
can be assigned to three different velocities. For a low ambient
temperature of T1 = 293.73 K a double valued solution exists. It
means that for moderate and large pressure differences two veloc-
ities are obtained for one set of parameters. There is a minimal
pressure difference pdiff at which one pressure difference pdiff

matches unambiguously with one velocity um. For very small pres-
sure differences the strong cooling leads to T ? jCj. As a result we
have g ?1, see Eq. (1), and no solution of the governing Eqs. (3)–
(7) exists at all. Hence, the lower branch of the curve is missing.
Figs. 3-3 and 3-4 further show that the results obtained with the
two models are in a good agreement. For the high ambient temper-
ature the quantitative agreement is particularly noteworthy.

The difference between the results of the simulations and
the one-dimensional model for the cooling temperature
T1 = 293.73 K originates from the radial variation of the tempera-
ture and finally the radial variation of the viscosity. In the
one-dimensional model the viscosity is calculated for the mean
temperature, whereas in the simulation the full radial temperature
distribution and the non-linear temperature-dependent viscosity
in radial direction are considered. Fig. 3-5 shows that for a given
velocity of um = 10�3 m/s the outlet temperature predicted by the
one-dimensional model is equal to the mean outlet temperature
obtained with the two-dimensional simulation. However, in the
simulation the strong cooling at the pipe wall has a significant
influence. As the viscosity increases exponentially with decreasing
temperature, the viscosity in the vicinity of the wall increases
much more than with a linear temperature dependence. Conse-
quently, the mean viscosity in the simulation is higher than the
mean viscosity in the one-dimensional model as indicated appar-
ent in Fig. 3-6. For this reason a higher driving pressure difference
pdiff is necessary in the simulation during the reduction of the
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temperature to obtain the same velocities as in the analytical one-
dimensional model. Therefore the inflexion point is reached at a
higher pdiff in the two-dimensional simulation.

Because of the variation in radial and axial direction of the vis-
cosity in the pipe, the velocity profile changes as well, see Fig. 3-7.
It is readily seen that the prescribed parabolic velocity profile ex-
ists only at the inlet. With increasing cooling along the pipe axis
– and hence an increasing viscosity at the pipe walls – the velocity
at the edge decreases. In return, due to the condition of incom-
pressibility, the velocity increases toward the centre of the pipe.
Therefore the velocity profile at the outlet is squeezed.

3.3. Heating and cooling at different heat-transfer coefficients

In Section 3.3 we deal with the general case which consists of
cooling of the fluid while it is heated at the same time. In the pro-
cess we vary the heat-transfer coefficient a and keep all other
parameters constant, i.e. the ambient temperature is set to
T1 = 293.73 K and the current density is set to J = 103 A/m2. The re-
sults of the simulations are summarized in Figs. 3-8 and 3-9.

For a heat-transfer coefficient of a = 1 W/m2 K the influence of
the heating is still stronger than that of the cooling. The depen-
Fig. 3-5. Radial profile of the temperature for the case of cooling without heating:
temperature T(L,r) (dotted line) and mean temperature Tout as obtained from the
present simulation in comparison with the temperature (circles) predicted by the
one-dimensional model with um = 0.001 m/s, T1 = 293.15 K, a = 10 W/m2 K, and
Tin = 1573.15 K.

Fig. 3-6. Radial profile of the viscosity for the case of cooling without heating:
viscosity g(L,r) (dotted line) and mean viscosity at the outlet gout as obtained from
the present simulation in comparison with the viscosity (circles) predicted by the
one-dimensional model with um = 0.001 m/s, T1 = 293.15 K a = 10 W/m2 K, and
Tin = 1573.15 K.
dence of um on pdiff looks similar like the case of pure heating we
discussed in Section 3.1. If cooling dominates, a = 10 W/m2 K and
a = 50 W/m2 K, a bifurcation develops. Because of the additional
heating we do not receive a two valued solution like in Section
3.2. With increasing cooling of the fluid the bifurcation is more
pronounced and the quantitative differences between the simula-
tion and the one-dimensional model increases. The range in which
one pressure value can be assigned to three velocities is much
smaller in the simulation than in the one-dimensional model, as
it can be seen in Fig. 3-8. In the upper branch, coming from a high
velocity, bifurcation sets in for larger pdiff in the simulation. An
explanation for this behaviour can be found in the strong cooling
of the melt at the wall and the accompanying increase of the vis-
cosity, like in the case of cooling without heating we discussed in
Section 3.2.

3.4. Cooling and heating at different thermal conductivities

Finally we study the general case involving cooling and heating
at different thermal conductivities k. Again, the ambient tempera-
ture is set to T1 = 293.15 K and the heat-transfer coefficient is set
Fig. 3-8. Results for heating and cooling at different heat-transfer coefficients:
dependence of the mean velocity on the applied pressure difference as obtained
from the numerical simulation for a = 1 W/m2 K, a = 10 W/m2 K and a = 50 W/m2 K
in comparison with the prediction of the one-dimensional model of Gießler et al.
(2007) with T1 = 293.73 K, J = 103 A/m2.

Fig. 3-7. Radial profile of the axial velocity ux at equidistant positions along the
pipe axis including the inlet and the outlet for the case of cooling without heating
obtained by numerical simulations with um = 10�3 m/s, T1 = 293.15 K,
a = 10 W/m2 K, Tin = 1573.15 K and x = 0, L/5, 2L/5, 3L/5, 4L/5, L.



Fig. 3-9. Results for heating and cooling at different heat-transfer coefficients:
dependence of the mean outlet temperature on the applied pressure difference as
obtained from the numerical simulation for a = 1 W/m2 K, a = 10 W/m2 K and
a = 50 W/m2 K in comparison with the prediction of the one-dimensional model of
Gießler et al. (2007) with T1 = 293.73 K, J = 103 A/m2, and Tin = 1573.15 K.
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to a = 10 W/m2 K. The heating of the fluid is accomplished by a cur-
rent density of J = 103 A/m2.

If we vary the thermal conductivity k of the fluid, the flow char-
acteristics can change considerably as one can see in Figs. 3-10 and
Fig. 3-10. Results for heating and cooling at different thermal conductivities:
dependence of the mean velocity on the applied pressure difference as obtained
from the numerical simulation for (a) k = 0.25 W/m2 K, k = 1.2 W/m2 K, k = 5 W/
m2 K and (b) k = 5 W/m2 K, k = 30 W/m2K, k = 50 W/m2 K in comparison with the
prediction of the one-dimensional model of Gießler et al. (2007) with T1 = 293.73 K,
a = 10 W/m2 K and J = 103 A/m2.
3-11. In the one-dimensional model bifurcation develops if the
conductivity is smaller than a certain critical value, i.e. k < kmax.
The smaller k, the more distinct the bifurcation is. For k = 0 the
pressure range for which one pressure value can be assigned to
three velocities reaches its maximum. In contrast in the simulation
we obtain a range kmin 6 k 6 kmax for which the function um(pdiff) is
not single valued. For k < kmin and k > kmax every pdiff can be as-
signed unambiguously to one um.

The results of both models are in good agreement for moderate
and large values of k. This is caused by the flattening of the temper-
ature profile in the simulation with increasing thermal conductiv-
ity. If k has reached a certain value, the temperature in radial
direction is almost constant. The agreement of the simulation
and the one-dimensional model is very good. Fig. 3-12 shows an
example of the flattening of the temperature profile for increasing
thermal conductivity.

4. Summary and prospects

This work is concerned with the comparison of a one-dimen-
sional model (Gießler et al., 2007) and a two-dimensional axisym-
metric simulation of glass melt flowing through a circular pipe. We
assume that the fluid is heated by internal volumetric (Joule) heat-
ing and cooled at the wall. The exponential temperature depen-
dence of the viscosity and the electrical conductivity are fully
taken into account. While varying different parameters the results
Fig. 3-11. Results for heating and cooling at different thermal conductivities:
dependence of the mean outlet temperature on the applied pressure difference as
obtained from the numerical simulation for (a) k = 0.25 W/m2 K, k = 1.2 W/m2 K,
k = 5 W/m2 K and (b) k = 5 W/m2 K, k = 30 W/m2 K, k = 50 W/m2 K in comparison
with the prediction of the one-dimensional model of Gießler et al. (2007) with
T1 = 293.73 K, a = 10 W/m2 K, J = 103 A/m2, and Tin = 1573.15 K.



Fig. 3-12. Temperature profile at the outlet T(L,r) for different thermal conductiv-
ities k with um = 10�6 m/s, T1 = 293.15 K, a = 10 W/m2 K, J = 103 A/m2, and
Tin = 1573.15 K.
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of the two models are being compared. The anticipated flow char-
acteristics obtained with the one-dimensional model have been
confirmed qualitatively by the two-dimensional axial simulation.

We find a very good agreement between the one-dimensional
model and the two-dimensional axisymmetric simulation in the
case of heating of the glass melt without cooling. The monotonic,
non-linear flow behaviour has been reproduced correctly by the
one-dimensional model. In the case of dominating cooling bifurca-
tions develop, which are reproduced by both models. For strong
cooling differences between the one-dimensional model and the
two-dimensional axial simulation appear. This is a result of large
temperature gradients along the radial axis of the pipe and the
exponential increase of viscosity with decreasing temperature.
The mean viscosity of the simulation is larger than the viscosity ob-
tained with the one-dimensional model. For moderate and high
thermal conductivities k the results of simulation and one-dimen-
sional model are in good agreement, as the temperature is almost
constant across the cross-section in the simulation. However, for
low thermal conductivity differences develop. In the one-dimen-
sional model bifurcation exists for all k 6 kmax. But in the simula-
tion we observed monotonic flow characteristics for very small k.
Here, bifurcation exists only for kmin 6 k 6 kmax.

The comparison of both variants for studying the flow charac-
teristics of a circular pipe with coupled physical problems shows
positive aspects for the one-dimensional model with respect to
computational efficiency and good reproduction of elementary
physical phenomena. However, the one-dimensional model does
not reproduce the radial dependence of the temperature and the
resulting radial viscosity variation. Those are better captured by
the two-dimensional finite-element simulation.
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Appendix

In the following the validity of the boundary condition Eq. (7b)
at the pipe wall will be explained. Therefore we analyse the effec-
tive thermal resistance Reff of the pipe. It is the sum of the resis-
tance for heat conduction through the pipe wall

Rcond ¼ ln
Rout

R

� �
1

2pLkwall

and the resistance for heat convection at the outer side of the wall

Rconv ¼
1

2pLRouta
;

with Rout being the outer radius of the pipe, kwall being the thermal
conductivity of the wall and the constant heat-transfer coefficient a,
see for example (Incropera and DeWitt, 1996). Now we model the
effective resistance Reff = Rcond + Rconv as effective heat convection

Reff ¼
1

2pLRoutaeff
:

The effective heat-transfer coefficient aeff then becomes

aall ¼
a

1þ lnðRout=RÞRouta=kwall
:

Typically the thermal conductivity of such pipes in glass production
is kwall � 102 W/(m K) and the thickness is about Rout � R � 10�2 m.
With a typical radius of R = 0.025 m and a typical heat-transfer coef-
ficient of a � 5 for free convection we have ln(Rout/R)Routa/kwall ? 1
which leads to aeff � a. Therefore it is legitimate to use Eq. (7b) at
the wall boundary of the solution area.
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